Selected Solutions for Chapter 3: Growth of Functions

Solution to Exercise 3.1-2

To show that $(n + a)^b = \Theta(n^b)$, we want to find constants $c_1, c_2, n_0 > 0$ such that $0 \le c_1 n^b \le (n + a)^b \le c_2 n^b$ for all $n \ge n_0$.

Note that

 $n + a \leq n + |a|$ $\leq 2n \quad \text{when } |a| \leq n ,$ and $n + a \geq n - |a|$ $\geq \frac{1}{2}n \quad \text{when } |a| \leq \frac{1}{2}n .$

Thus, when $n \ge 2 |a|$,

$$0 \le \frac{1}{2}n \le n+a \le 2n \; .$$

Since b > 0, the inequality still holds when all parts are raised to the power b:

$$0 \le \left(\frac{1}{2}n\right)^b \le (n+a)^b \le (2n)^b ,$$
$$0 \le \left(\frac{1}{2}\right)^b n^b \le (n+a)^b \le 2^b n^b .$$

Thus, $c_1 = (1/2)^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the definition.

Solution to Exercise 3.1-3

Let the running time be T(n). $T(n) \ge O(n^2)$ means that $T(n) \ge f(n)$ for some function f(n) in the set $O(n^2)$. This statement holds for any running time T(n), since the function g(n) = 0 for all n is in $O(n^2)$, and running times are always nonnegative. Thus, the statement tells us nothing about the running time.

Solution to Exercise 3.1-4

 $2^{n+1} = O(2^n)$, but $2^{2n} \neq O(2^n)$. To show that $2^{n+1} = O(2^n)$, we must find constants $c, n_0 > 0$ such that $0 \le 2^{n+1} \le c \cdot 2^n$ for all $n \ge n_0$. Since $2^{n+1} = 2 \cdot 2^n$ for all n, we can satisfy the definition with c = 2 and $n_0 = 1$. To show that $2^{2n} \neq O(2^n)$, assume there exist constants $c, n_0 > 0$ such that $0 \le 2^{2n} \le c \cdot 2^n$ for all $n \ge n_0$. Then $2^{2n} = 2^n \cdot 2^n \le c \cdot 2^n \Rightarrow 2^n \le c$. But no constant is greater than all 2^n , and so the assumption leads to a contradiction.

Solution to Exercise 3.2-4

 $\lceil \lg n \rceil \rceil!$ is not polynomially bounded, but $\lceil \lg \lg n \rceil !$ is.

Proving that a function f(n) is polynomially bounded is equivalent to proving that lg(f(n)) = O(lg n) for the following reasons.

- If f is polynomially bounded, then there exist constants c, k, n_0 such that for all $n \ge n_0$, $f(n) \le cn^k$. Hence, $\lg(f(n)) \le kc \lg n$, which, since c and k are constants, means that $\lg(f(n)) = O(\lg n)$.
- Similarly, if lg(f(n)) = O(lgn), then f is polynomially bounded.

In the following proofs, we will make use of the following two facts:

- 1. $\lg(n!) = \Theta(n \lg n)$ (by equation (3.19)).
- 2. $\lceil \lg n \rceil = \Theta(\lg n)$, because
 - $\lceil \lg n \rceil \ge \lg n$
 - $\lceil \lg n \rceil < \lg n + 1 \le 2 \lg n$ for all $n \ge 2$

$$lg(\lceil lg n \rceil !) = \Theta(\lceil lg n \rceil lg \lceil lg n \rceil)$$

= $\Theta(lg n lg lg n)$
= $\omega(lg n)$.

Therefore, $\lg(\lceil \lg n \rceil!) \neq O(\lg n)$, and so $\lceil \lg n \rceil!$ is not polynomially bounded.

$$lg(\lceil lg lg n \rceil!) = \Theta(\lceil lg lg n \rceil lg \lceil lg lg n \rceil)$$

= $\Theta(lg lg n lg lg lg n)$
= $o((lg lg n)^2)$
= $o(lg^2(lg n))$
= $o(lg n)$.

The last step above follows from the property that any polylogarithmic function grows more slowly than any positive polynomial function, i.e., that for constants a, b > 0, we have $\lg^b n = o(n^a)$. Substitute $\lg n$ for n, 2 for b, and 1 for a, giving $\lg^2(\lg n) = o(\lg n)$.

Therefore, $\lg(\lceil \lg \lg n \rceil!) = O(\lg n)$, and so $\lceil \lg \lg n \rceil!$ is polynomially bounded.