Selected Solutions for Chapter 3:
 Growth of Functions

Solution to Exercise 3.1-2

To show that $(n+a)^{b}=\Theta\left(n^{b}\right)$, we want to find constants $c_{1}, c_{2}, n_{0}>0$ such that $0 \leq c_{1} n^{b} \leq(n+a)^{b} \leq c_{2} n^{b}$ for all $n \geq n_{0}$.
Note that

$$
\begin{aligned}
& n+a \leq n+|a| \\
& \leq 2 n \quad \text { when }|a| \leq n \\
& \text { and } \\
& n+a \geq n-|a| \\
& \geq \frac{1}{2} n \quad \text { when }|a| \leq \frac{1}{2} n
\end{aligned}
$$

Thus, when $n \geq 2|a|$,
$0 \leq \frac{1}{2} n \leq n+a \leq 2 n$.
Since $b>0$, the inequality still holds when all parts are raised to the power b :
$0 \leq\left(\frac{1}{2} n\right)^{b} \leq(n+a)^{b} \leq(2 n)^{b}$,
$0 \leq\left(\frac{1}{2}\right)^{b} n^{b} \leq(n+a)^{b} \leq 2^{b} n^{b}$.
Thus, $c_{1}=(1 / 2)^{b}, c_{2}=2^{b}$, and $n_{0}=2|a|$ satisfy the definition.

Solution to Exercise 3.1-3

Let the running time be $T(n) . T(n) \geq O\left(n^{2}\right)$ means that $T(n) \geq f(n)$ for some function $f(n)$ in the set $O\left(n^{2}\right)$. This statement holds for any running time $T(n)$, since the function $g(n)=0$ for all n is in $O\left(n^{2}\right)$, and running times are always nonnegative. Thus, the statement tells us nothing about the running time.

Solution to Exercise 3.1-4

$2^{n+1}=O\left(2^{n}\right)$, but $2^{2 n} \neq O\left(2^{n}\right)$.
To show that $2^{n+1}=O\left(2^{n}\right)$, we must find constants $c, n_{0}>0$ such that

$$
0 \leq 2^{n+1} \leq c \cdot 2^{n} \text { for all } n \geq n_{0}
$$

Since $2^{n+1}=2 \cdot 2^{n}$ for all n, we can satisfy the definition with $c=2$ and $n_{0}=1$.
To show that $2^{2 n} \neq O\left(2^{n}\right)$, assume there exist constants $c, n_{0}>0$ such that $0 \leq 2^{2 n} \leq c \cdot 2^{n}$ for all $n \geq n_{0}$.
Then $2^{2 n}=2^{n} \cdot 2^{n} \leq c \cdot 2^{n} \Rightarrow 2^{n} \leq c$. But no constant is greater than all 2^{n}, and so the assumption leads to a contradiction.

Solution to Exercise 3.2-4

$\lceil\lg n\rceil!$ is not polynomially bounded, but $\lceil\lg \lg n\rceil!$ is.
Proving that a function $f(n)$ is polynomially bounded is equivalent to proving that $\lg (f(n))=O(\lg n)$ for the following reasons.

- If f is polynomially bounded, then there exist constants c, k, n_{0} such that for all $n \geq n_{0}, f(n) \leq c n^{k}$. Hence, $\lg (f(n)) \leq k c \lg n$, which, since c and k are constants, means that $\lg (f(n))=O(\lg n)$.
- Similarly, if $\lg (f(n))=O(\lg n)$, then f is polynomially bounded.

In the following proofs, we will make use of the following two facts:

1. $\lg (n!)=\Theta(n \lg n)$ (by equation (3.19)).
2. $\lceil\lg n\rceil=\Theta(\lg n)$, because

- $\lceil\lg n\rceil \geq \lg n$
- $\lceil\lg n\rceil<\lg n+1 \leq 2 \lg n$ for all $n \geq 2$

$$
\begin{aligned}
\lg (\lceil\lg n\rceil!) & =\Theta(\lceil\lg n\rceil \lg \lceil\lg n\rceil) \\
& =\Theta(\lg n \lg \lg n) \\
& =\omega(\lg n)
\end{aligned}
$$

Therefore, $\lg (\lceil\lg n\rceil!) \neq O(\lg n)$, and so $\lceil\lg n\rceil!$ is not polynomially bounded.

$$
\begin{aligned}
\lg (\lceil\lg \lg n\rceil!) & =\Theta(\lceil\lg \lg n\rceil \lg \lceil\lg \lg n\rceil) \\
& =\Theta(\lg \lg n \lg \lg \lg n) \\
& =o\left((\lg \lg n)^{2}\right) \\
& =o\left(\lg ^{2}(\lg n)\right) \\
& =o(\lg n)
\end{aligned}
$$

The last step above follows from the property that any polylogarithmic function grows more slowly than any positive polynomial function, i.e., that for constants $a, b>0$, we have $\lg ^{b} n=o\left(n^{a}\right)$. Substitute $\lg n$ for $n, 2$ for b, and 1 for a, giving $\lg ^{2}(\lg n)=o(\lg n)$.
Therefore, $\lg (\lceil\lg \lg n\rceil!)=O(\lg n)$, and so $\lceil\lg \lg n\rceil!$ is polynomially bounded.

